来自李柏峰的问题
已知x、y、z为实数,且{1/x+1/y+1/z=2,1/x^2+1/y^2+1/z^2=1,则1/xy+1/yz+1/xz=___________.
已知x、y、z为实数,且{1/x+1/y+1/z=2,1/x^2+1/y^2+1/z^2=1,则1
/xy+1/yz+1/xz=___________.
1回答
2020-06-30 17:55
已知x、y、z为实数,且{1/x+1/y+1/z=2,1/x^2+1/y^2+1/z^2=1,则1/xy+1/yz+1/xz=___________.
已知x、y、z为实数,且{1/x+1/y+1/z=2,1/x^2+1/y^2+1/z^2=1,则1
/xy+1/yz+1/xz=___________.
1/x+1/y+1/z=2,
所以(1/x+1/y+1/z)^2=4
展开后得到1/x^2+1/y^2+1/z^2+2(1/xy+1/zy+1/xz)=4
又有1/x^2+1/y^2+1/z^2=1,
所以1/xy+1/zy+1/xz=(4-1)/2=3/2