【已知:5cos(a-b/2)+7cos(b/2)=0求:t-查字典问答网
分类选择

来自连晓峰的问题

  【已知:5cos(a-b/2)+7cos(b/2)=0求:tan(a/2)*tan((a-b)/2)已知5cos(a-b/2)+7cos(b/2)=0,求tan(a/2)*tan[(a-b)/2].由5cos(a-b/2)+7cos(b/2)=0得5[cosacos(b/2)+sinasin(b/2)]+7cos(b/2)=05{[2cos^2(a/2)-1]cos(b/2)+sinasin(b/2)}+7cos(b/2)=010[cos^2(a/2)cos(b】

  已知:5cos(a-b/2)+7cos(b/2)=0

  求:tan(a/2)*tan((a-b)/2)

  已知5cos(a-b/2)+7cos(b/2)=0,求tan(a/2)*tan[(a-b)/2].

  由5cos(a-b/2)+7cos(b/2)=0

  得5[cosacos(b/2)+sinasin(b/2)]+7cos(b/2)=0

  5{[2cos^2(a/2)-1]cos(b/2)+sinasin(b/2)}+7cos(b/2)=0

  10[cos^2(a/2)cos(b/2)+10sin(a/2)cos(a/2)sin(b/2)+2cos(b/2)=0

  7cos(b/2)——>2cos(b/2)这为什么会从7跑到2的?

  用2cos(b/2)除两边得:

  5cos^2(a/2)+5sin(a/2)cos(a/2)tan(b/2)+1=0

  ∴tan(b/2)=-[1+5cos^2(a/2)]/5sin(a/2)cos(a/2)

  =-[sin^2(a/2)+6cos^2(a/2)]/5sin(a/2)cos(a/2)

  =-[tan^2(a/2)+6]/5tan(a/2).

  于是tan(a/2)tan[(a-b)/2]=tan(a/2)[tan(a/2)-tan(b/2)]/[1+tan(a/2)tan(b/2],将tan(b/2)的表达式代入,化简得:

  tan(a/2)tan[(a-b)/2]=-6.

1回答
2020-07-19 22:52
我要回答
请先登录
白丹

  [2cos^2(a/2)-1]cos(b/2)这里有个-1*cos(b/2)

  括号外乘以5变成了-5cos(b/2)+7cos(b/2)=2cos(b/2)

2020-07-19 22:53:19

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •