来自郭树武的问题
【求以椭圆x216+y29=1的两个顶点为焦点,以椭圆的焦点为顶点的双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.】
求以椭圆x216+y29=1的两个顶点为焦点,以椭圆的焦点为顶点的双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.
1回答
2020-07-21 22:33
【求以椭圆x216+y29=1的两个顶点为焦点,以椭圆的焦点为顶点的双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.】
求以椭圆x216+y29=1的两个顶点为焦点,以椭圆的焦点为顶点的双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.
椭圆的焦点F1(-7,0),F2(7,0),即为双曲线的顶点.∵双曲线的顶点和焦点在同一直线上,∴双曲线的焦点应为椭圆长轴的端点A1(-4,0),A2(4,0),∴c=4,a=7,∴b=3,故所求双曲线的方程为x27−y29=1.…(6...