大学数学微分方程求一个以y1=e^x,y2+2xe^x,y3-查字典问答网
分类选择

来自金艳华的问题

  大学数学微分方程求一个以y1=e^x,y2+2xe^x,y3=cos2x,y4=3sin2x为特解的4阶常系数线性齐次微分方程,并求其通解

  大学数学微分方程

  求一个以y1=e^x,y2+2xe^x,y3=cos2x,y4=3sin2x为特解的4阶常系数线性齐次微分方程,并求其通解

1回答
2019-03-31 06:59
我要回答
请先登录
施阳

  所以可以看出线性无关的四组解为e^x,xe^x,cos2x,sin2x所以特征根为1,1,2i,-2i所以特征根方程为(r-1)^2(r-2i)(r+2i)=0(r^2-2r+1)(r^2+4)=0r^4-2r^3+5r^2-8r+4=0即原方程为y''''-2y'''+5y''-8y'+4y=0通解为y=C1e^x+C2x...

2019-03-31 07:03:24

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •