【牛顿莱布尼茨公式求区间内函数所包含的面积,如何理解?我是微-查字典问答网
分类选择

来自秦绪伟的问题

  【牛顿莱布尼茨公式求区间内函数所包含的面积,如何理解?我是微积分初学者,目前已经知道函数特定区间内所包含的面积可用牛顿莱布尼茨公式,但是不能理解为什么可以这么做,为什么被积函】

  牛顿莱布尼茨公式求区间内函数所包含的面积,如何理解?

  我是微积分初学者,目前已经知道函数特定区间内所包含的面积可用牛顿莱布尼茨公式,但是不能理解为什么可以这么做,为什么被积函数要转换成原函数,再在原函数上求积分路径F(终点)-F(起点),然后这个数值为什么就等于前面所说的面积?还有每个函数的原函数不是都有无数多个吗,怎么算的时候就自动把那个C去掉了呢?哪位高人能解释一下,就拿最简单的被积函数为y=x,区间【1,2】来解释吧,感激不尽!

3回答
2020-07-23 09:24
我要回答
请先登录
安若铭

  不知你学过微积分中值定理没有,学过的话这个问题很容易理解.没学过你再问我吧.

  中值定理说的是,对一个闭区间[a,b]连续可导的函数F(x),总能在区间内找到一点c,使得

  F'(c)(b-a)=F(b)-F(a),

  其几何含义就是,连接(a,F(a))和(b,F(b))这条线段,那么这条线段总会和区间内某一点的切线平行.知道这个后,你想,定积分定义里面是无穷个小段面积加起来,也就是

  Sum(i从1到n)f(ci)(x(i)-x(i-1))

  其中ci是区间[x(i-1),x(i)]内一点.

  如果f的原函数是F,那每一项小面积不就可以表示成F(x(i))-F(x(i-1))吗?(我这里都是直观上进行解释,不是精确的证明),那么整个求和的式子不就变成F(x(n))-F(x(0))吗(相邻项抵消),于是定积分就转化为原函数在端点的数值差了,这就是牛顿-莱布尼茨公式的原理.

  第二,原函数的确有无穷多个,但是我们需要的是数值的差,因此F(b)+C-[F(a)+C]中的C在做减法后抵消了,所以求定积分时不用写C.

  最后,你说的y=x的例子非常好理解.先考虑用定积分定义求面积.于是每一个小区间上的面积是梯形面积:[x(i)+x(i-1)]c(i)/2,当划分得无限细密的时候,c(i)其实和x(i),x(i-1)都非常接近,所以每一个区间段上的面积就近似是(x+x)x/2=x^2,最后加起来的面积一定是和x的平方有关的,而y=x原函数不就是y=x^2/2吗,因此这个面积可以用原函数来表示就不奇怪了.

2020-07-23 09:25:42
秦绪伟

  其余的都明白,就有一个点不明白,为什么你说的f(ci)(x(i)-x(i-1))等于F(x(i))-F(x(i-1))??这里的f(ci)是导数还是函数在x=ci的时候y的值???麻烦再耐心讲解一下,谢谢。

2020-07-23 09:26:57
安若铭

  f(ci)是函数在这点的数值,F是f的原函数,根据中值定理,由于F的导数就是f,所以f(ci)(x(i)-x(i-1))=F(x(i))-F(x(i-1))

2020-07-23 09:30:43

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •