来自丁祖昌的问题
有理数集合表示法的为问题,我在看同济第五版高数上册时,其第2页第5行写到:全体有理数的集合记作Q,即Q={p/q|p∈Z,q∈N+且p与q互质},如果p与q互为质数的话,那p/q岂不是不可能是整数,而有理
有理数集合表示法的为问题,
我在看同济第五版高数上册时,其第2页第5行写到:全体有理数的集合记作Q,即
Q={p/q|p∈Z,q∈N+且p与q互质},如果p与q互为质数的话,那p/q岂不是不可能是整数,而有理数应该包括整数的啊?
还有,p/q难道就不会又无限不循环小数出现吗?
1回答
2020-07-28 01:45