来自李孝明的问题
【已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√3/3,过右焦点F的直线L与C相交于A、B两点,当l的斜率为1时,坐标原点O到L的距离为√2/2.C上是否存在点P,】
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√3/3,过右焦点F的直线L与C相交于A、B两点,当l的斜率为1时,坐标原点O到L的距离为√2/2.
C上是否存在点P,使得当L绕F转到某一位置时,有向量OP=向量OA+向量OB成立?若存在,求出所有点P的坐标与L的方程;若不存在,说明理由.
1回答
2020-07-31 15:28