【分解因式:(1)x3+3x2-4;(2)x4-11x2y2-查字典问答网
分类选择

来自黄力的问题

  【分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y4;(3)x3+9x2+26x+24;(4)x4-12x+323.】

  分解因式:

  (1)x3+3x2-4;

  (2)x4-11x2y2+y4;

  (3)x3+9x2+26x+24;

  (4)x4-12x+323.

1回答
2020-07-31 16:19
我要回答
请先登录
戴旭涵

  (1)x3+3x2-4

  =x3+2x2+x2-4

  =x2(x+2)+(x+2)(x-2)

  =(x+2)(x2+x-2)

  =(x+2)(x+2)(x-1)

  =(x+2)2(x-1).

  (2)x4-11x2y2+y4

  =(x4-2x2y2+y4)-9x2y2

  =(x2-y2)2-(3xy)2

  =(x2-y2+3xy)(x2-y2-3xy).

  (3)x3+9x2+26x+24

  =(x3+2x2)+(7x2+14x)+(12x+24)

  =x2(x+2)+7x(x+2)+12(x+2)

  =(x+2)(x2+7x+12)

  =(x+2)(x+3)(x+4).

  (4)设x4-12x+323=(x2+ax+17)(x2+bx+19),

  ∴由多项式的乘法得到:x4+(a+b)x3+(36+ab)x2+(19a+17b)x+323=x4-12x+323.

  ∴a+b=0,

  ab+36=0

  19a+17b=-12.

  ∴a=-6,b=6.

  ∴x4-12x+323

  =(x2-6x+17)(x2+6x+19).

2020-07-31 16:21:42

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •