奥地利数学家皮克发现了一个计算正方形网格纸中多边形面积的公式-查字典问答网
分类选择

来自崔祖强的问题

  奥地利数学家皮克发现了一个计算正方形网格纸中多边形面积的公式:S=a+12b-1,方格纸中每个小正方形的边长为1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形

  奥地利数学家皮克发现了一个计算正方形网格纸中多边形面积的公式:

  S=a+12b-1,方格纸中每个小正方形的边长为1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.

  注:①由n条线段依次首尾连接而成的封闭图形叫做n边形,这些线段的端点叫做顶点;

  ②网格中小正方形的顶点叫格点.

  如:在图①中,点A、B、C、D都正好在格点上,那么四边形ABCD的面积S=8+12×4-1=9.

  运用上述知识回答:

  (1)如图②中,求四边形ABCD的面积;

  (2)如图③、④、⑤,若多边形的顶点都在格点上,且面积为6,请画出这样三个形状不同的多边形(多边形的边数≥6).并写出相应的a、b的值.

  a=______; a=______; a=______;

  b=______.b=______.b=______.

1回答
2020-07-31 07:13
我要回答
请先登录
刘红兵

  (1)由题意,得

  a=5,b=6,

  ∴S=a+12

2020-07-31 07:17:53

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •