来自丁泉的问题
如图,梯形ABCD,AD∥BC,AB=AD+BC,E是CD的中点.求证:(1)AE⊥BE;(2)AE、BE分别平分∠BAD及∠ABC.
如图,梯形ABCD,AD∥BC,AB=AD+BC,E是CD的中点.求证:
(1)AE⊥BE;
(2)AE、BE分别平分∠BAD及∠ABC.
1回答
2020-08-03 00:24
如图,梯形ABCD,AD∥BC,AB=AD+BC,E是CD的中点.求证:(1)AE⊥BE;(2)AE、BE分别平分∠BAD及∠ABC.
如图,梯形ABCD,AD∥BC,AB=AD+BC,E是CD的中点.求证:
(1)AE⊥BE;
(2)AE、BE分别平分∠BAD及∠ABC.
证明:(1)过E作EF∥BC,
∵E是CD的中点,
∴F为AB中点,
∴EF是梯形ABCD的中位线,
则EF=12