【已知抛物线c:x^2=-2(y-m),点a、b及p(2,4)均在抛物线上,且直线PA与PB的倾斜角互补(1)求证:直线AB斜率为定值(2)当直线AB在y轴上的截距为正值时.求S△ABP的最大值】
已知抛物线c:x^2=-2(y-m),点a、b及p(2,4)均在抛物线上,且直线PA与PB的倾斜角互补
(1)求证:直线AB斜率为定值
(2)当直线AB在y轴上的截距为正值时.求S△ABP的最大值
【已知抛物线c:x^2=-2(y-m),点a、b及p(2,4)均在抛物线上,且直线PA与PB的倾斜角互补(1)求证:直线AB斜率为定值(2)当直线AB在y轴上的截距为正值时.求S△ABP的最大值】
已知抛物线c:x^2=-2(y-m),点a、b及p(2,4)均在抛物线上,且直线PA与PB的倾斜角互补
(1)求证:直线AB斜率为定值
(2)当直线AB在y轴上的截距为正值时.求S△ABP的最大值
【1】证明:①∵点P(2,4)在抛物线y=(-1/2)x²+h上,∴4=(-1/2)×2²+h..
∴h=6.
∴抛物线y=(-1/2)x²+6.
②∵点A,B均在该抛物线上,故可设其坐标为A(2a,6-2a²),B(2b,6-2b²).(a≠b).
③由题设可知,若直线PA的倾斜角为β,则直线PB的倾斜角为π-β
∴由斜率公式可知,Kpa=tanβ.Kpb=tan(π-β)=-tanβ.
∴Kpa+Kpb=0.即两条直线PA与PB的斜率之和为0.
又由斜率公式可得:Kpa=(2-2a²)/(2a-2)=-(a+1).
Kpb=(2-2b²)/(2b-2)=-(b+1).
∴[-(a+1)]+[-(b+1)]=0.∴a+b=-2.
④由斜率公式可得:Kab=[(6-2a²)-(6-2b²)]/(2a-2b)=(b²-a²)/(a-b)=-(a+b)=2.
∴直线AB的斜率恒为定值2.
①∵直线AB的斜率为2,故可设其“斜截式方程”为:y=2x+t.
又直线AB的纵截距为正,∴t>0.
联立抛物线方程y=(-1/2)x²+6与直线方程y=2x+t.,整理可得:
x²+4x+2(t-6)=0.
∴判别式⊿=16-8(t-6)=8(8-t)>0.∴0<t<8.
②由“圆锥曲线弦长公式”可知,弦|AB|=√[40(8-t)].
再由“点到直线的距离公式”可知,点P(2,4)到直线AB:y=2x+t的距离d为:
d=t/(√5).
∴三角形⊿PAB的面积S=(1/2)×|AB|×d=(1/2)×√[40(8-t)]×t/(√5).
=√[2t²(8-t)]=√[2(-t³+8t²)].
③现在来求函数f(t)=-t³+8t²,(0<t<8)的最大值.
求导可得f′(t)=-3t²+16t.=-t(3t-16).
易知,在区间(0,8)上,当0<t<16/3时,有f′(t)>0.
当16/3<t<8时,有f′(t)<0.
∴由“函数单调性与其导数正负的关系”可知,
函数f(t)在t=16/3时取得最大值.∴当t=16/3时,⊿PAB的面积最大.
④当t=16/3时,由S=√[2t²(8-t)]可得:S=(64√3)/9.
即⊿PAB面积的最大值为(64√3)/9.
希望可以明白哦~