【有关锐角三角函数的已知a,b,c是三角形ABC的三边,它们-查字典问答网
分类选择

来自李俊民的问题

  【有关锐角三角函数的已知a,b,c是三角形ABC的三边,它们的对角分别为角A,角B,角C且a乘以cosB=b乘以cosA,关于x的方程b(x的平方-1)+(cx的平方+1)-2ax=0的两个实根相等.求证:三角形ABC是等腰直角三角形.】

  有关锐角三角函数的

  已知a,b,c是三角形ABC的三边,它们的对角分别为角A,角B,角C且a乘以cosB=b乘以cosA,关于x的方程b(x的平方-1)+(cx的平方+1)-2ax=0的两个实根相等.求证:三角形ABC是等腰直角三角形.

1回答
2020-08-10 07:10
我要回答
请先登录
冯志华

  题目打得有一点问题吧,应该是

  b(x的平方-1)+c(x的平方+1)-2ax=0的两个实根相等

  由正弦定理,a/sinA=b/sinB,所以由acosB=bcosA可知sinAcosB=sinBcosA

  即sinAcosB-sinBcosA=0,sin(A-B)=0,A=B(1)

  又因为关于x的方程b(x的平方-1)+c(x的平方+1)-2ax=0

  即为(b+c)x^2-2ax+(c-b)=0.两个实数根相等即判别式delta=0,从而

  4a^2-4(b+c)(c-b)=0,即c^2=a^2+b^2,因此三角形ABC是直角三角形,角C是直角(2)

  综合(1)(2)可知三角形ABC是等腰直角三角形.

2020-08-10 07:13:38

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •