来自迟悦的问题
设a大于等于0小于等于2,且函数f(x)=cos2x-asinx+b的最大值为0,最小值为-4,求a,b的值2是2此方
设a大于等于0小于等于2,且函数f(x)=cos2x-asinx+b的最大值为0,最小值为-4,求a,b的值
2是2此方
1回答
2020-08-10 09:05
设a大于等于0小于等于2,且函数f(x)=cos2x-asinx+b的最大值为0,最小值为-4,求a,b的值2是2此方
设a大于等于0小于等于2,且函数f(x)=cos2x-asinx+b的最大值为0,最小值为-4,求a,b的值
2是2此方
f(x)=cos²x-asinx+b
=1-sin²x-asinx+b
=-sin²x-asinx+b+1
令k=sinx-1≤k≤1
f(x)=-k²-ak+b+1(-1≤k≤1)
已知0≤a≤2
那么对称轴x=-a/2(-1≤x≤0)
因为二次函数图像关于对称轴对称,又-1≤k≤1
所以当以x=-1为对称轴时,f(x)的最小值比较小
即当a=2,k=1时,取得最小值
代入得
-(1)²-2*1+b+1=-4
b-2=-4
b=-2
此时f(x)=-k²-2k-1=-(k+1)²
当k=-1时,取得最大值,最大值为0
所以求得a=2,b=-2