【在有理数范围内因式分解:(1)16(6x-1)(2x-1)-查字典问答网
分类选择

来自李竟武的问题

  【在有理数范围内因式分解:(1)16(6x-1)(2x-1)(3x+1)(x-1)+25=______.(2)(6x-1)(2x-1)(3x-1)(x-1)+x2=______.(3)(6x-1)(4x-1)(3x-1)(x-1)+9x4=______.】

  在有理数范围内因式分解:

  (1)16(6x-1)(2x-1)(3x+1)(x-1)+25=______.

  (2)(6x-1)(2x-1)(3x-1)(x-1)+x2=______.

  (3)(6x-1)(4x-1)(3x-1)(x-1)+9x4=______.

1回答
2020-09-05 09:03
我要回答
请先登录
刘振栋

  (1)16(6x-1)(2x-1)(3x+1)(x-1)+25,

  =[(6x-1)(4x-2)][(6x+2)(4x-4)]+25,

  =(24x2-16x+2)(24x2-16x-8)+25,

  =(24x2-16x)2-6(24x2-16x)-16+25,

  =(24x2-16x)2-6(24x2-16x)+9,

  =(24x2-16x-3)2;

  (2)(6x-1)(2x-1)(3x-1)(x-1)+x2,

  =[(6x-1)(x-1)][(2x-1)(3x-1)]+x2,

  =(6x2-7x+1)(6x2-5x+1)+x2,

  =(6x2-6x+1-x)(6x2-6x+1+x)+x2,

  =(6x2-6x+1)2-x2+x2,

  =(6x2-6x+1)2;

  (3)(6x-1)(4x-1)(3x-1)(x-1)+9x4,

  =[(6x-1)(x-1)][(4x-1)(3x-1)]+9x4,

  =(6x2-7x+1)(12x2-7x+1)+9x4,

  令t=6x2-7x+1,则12x2-7x+1=t+6x2,

  ∴原式=t(t+6x2)+9x4,

  =t2+6•t•x2+9x4,

  =(t+3x2)2,

  =(6x2-7x+1+3x2)2,

  =(9x2-7x+1)2.

2020-09-05 09:05:51

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •