大一高等数学二重积分问题求由曲面Z=X2+2Y2及Z=6-2-查字典问答网
分类选择

来自蒋式勤的问题

  大一高等数学二重积分问题求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子首先求立体在xy坐标面上

  大一高等数学二重积分问题

  求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子

  首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,所以立体在xy坐标面上的投影区域是D:x^2+y^2≤2

  其次,根据二重积分的几何意义,立体的体积是两个曲顶柱体的体积的差,两个曲顶分别是Z=x^2+2y^2和z=6-2x^2-y^2,很容易判断得到z=6-2x^2-y^2在Z=x^2+2y^2上方

  所以,立体的体积V=∫∫(D)[(6-2x^2-2y^2)-(x^2+2y^2)]dxdy,在极坐标系下化为累次积分:V=∫(0~2π)dθ∫(0~√2)(6-3ρ^2)ρdρ=6π

  上述解法中1为什么要求X^2+Y^2=

1回答
2019-05-25 22:14
我要回答
请先登录
黄琦

  1、为什么要求X^2+Y^2=

2019-05-25 22:18:21

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •