【过点M(0,4)做圆O:x²+y²=4-查字典问答网
分类选择

来自聂林的问题

  【过点M(0,4)做圆O:x²+y²=4的切线l与抛物线F:y²=2px(p>0)交于A,B两点.(1).求直线l的方程(2).若OA⊥OB(O为坐标原点),求抛物线F的方程(3).求(2)中△AOB的面积.】

  过点M(0,4)做圆O:x²+y²=4的切线l与抛物线F:y²=2px(p>0)交于A,B两点.(1).求直线l的方程(2).若OA⊥OB(O为坐标原点),求抛物线F的方程(3).求(2)中△AOB的面积.

4回答
2020-09-28 23:21
我要回答
请先登录
杜玉越

  由已知得切线的斜率一定存在,设切线的方程为y=kx+4,即kx-y+4=0,

  由于L与圆x2+y2=4相切,

  ∴圆心到直线L的距离d=4/根号[1+k2]=2,解得k=±根号x093

  当k=x09根号3时,L的方程为:y=根号3x+4

  联立抛物线y2=2px(p>0)方程后,易得:x1•x2=16/3

  y1•y2=8根号3/3p

  由于以OA垂直OB,

  所以x1•x2+y1•y2=0

  解得:P=-2根号3/3(舍去)

  当k=-根号3时,L的方程为:y=-根号3x+4

  联立抛物线y2=2px(p>0)方程后,易得:x1•x2=16/3

  y1•y2=-8x09根号3/3p

  所以x1•x2+y1•y2=0

  解得:P=2根号3/3

  综上满足条件的方程是y^2=4根号3/3x

  (3)设L与X轴的交点是M,(4/根号3,0)

  y^2=4根号3/3*(4-y)/根号3=4/3*(4-y)

  y^2+4/3y-16/3=0

  |y1-y2|^2=(4/3)^2-4*(-16/3)=16/9+64/3=208/9

  |y1-y2|=4根号13/3

  S(AOB)=1/2*OM*|Y1-Y2|=1/2*4/根号3*4根号13/3=8根号13/(3根号3)=8根号39/9

2020-09-28 23:24:21
聂林

  谢谢你。。。可不可以请您顺便解一下这个题目。已知椭圆的中心在坐标原点,对称轴为坐标轴,离心率为根号3/2,一条准线方程为x=4倍根号3/3。1.求椭圆的方程。2.若P为椭圆上一点,F1,F2为椭圆焦点,使PF1⊥PF2,求△F1PF2的面积。3.求点Q(0,3/2)到椭圆上所有点距离的最大值。

2020-09-28 23:25:33
杜玉越

  抱歉,今天没有时间了,明天吧.

2020-09-28 23:26:40
聂林

  那好吧,有空的话请教一下,不过还是谢了

2020-09-28 23:29:46

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •