来自董学平的问题
【证明三角形的三边的高交于一点用初中圆的知识证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点连接CO并延长交AB于点F求证:CF⊥AB证明:连接DE∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴】
证明三角形的三边的高交于一点
用初中圆的知识证明
已知:ΔABC中,AD、BE是两条高,AD、BE交于点连接CO并延长交AB于点F
求证:CF⊥AB
证明:
连接DE
∵∠ADB=∠AEB=90度
∴A、B、D、E四点共圆
∴∠ADE=∠ABE
∵∠EAO=∠DAC∠AEO=∠ADC
∴ΔAEO∽ΔADC
∴AE/AO=AD/AC
∴ΔEAD∽ΔOAC
∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度
∴∠ACF+∠BAC=90度
∴CF⊥AB
因此三角形三条高交于一点
其中为什么A,B,D,E四点共圆???
1回答
2020-10-13 03:08