来自李长庆的问题
【一个3阶矩阵只有2个线性无关的特征向量,而这个矩阵只有一个3重根的特征值,求矩阵的秩】
一个3阶矩阵只有2个线性无关的特征向量,而这个矩阵只有一个3重根的特征值,求矩阵的秩
1回答
2020-10-14 18:42
【一个3阶矩阵只有2个线性无关的特征向量,而这个矩阵只有一个3重根的特征值,求矩阵的秩】
一个3阶矩阵只有2个线性无关的特征向量,而这个矩阵只有一个3重根的特征值,求矩阵的秩
设三阶方阵A的三重特征根为c
首先看这唯一的特征值c是不是0
1如果c是0那么Ax=cx=0那么由于矩阵只有2个线性无关的特征向量,即解空间的维数等于2那么rkA=n-dim解空间=3-2=1
2如果c非0那么A的行列式值为c的3次方就是说A是非奇异的所以满秩为3