如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),-查字典问答网
分类选择

来自郭旭静的问题

  如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;____(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线A

  如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

  (1)求A、B、C的坐标;____

  (2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;____

  (3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若,求点F的坐标.____

1回答
2019-06-21 10:21
我要回答
请先登录
林建文

  【分析】(1)利用抛物线解析式可得出C点坐标,令y=0,解关于x的方程,可求得A、B的坐标;

  n(2)设M点横坐标为m,则,MN=(-m-1)×2=-2m-2,矩形PMNQ的周长,根据二次函数的性质,即可得出矩形PMNQ的周长最大时m的值,然后求得直线AC的解析式,把x=m代入,可求得三角形的边长,从而求得三角形的面积;

  n(3)根据抛物线的对称轴可求得点D的坐标,得到DQ=DC,设F(n,,根据条件,结合点G在点F的上方,得到关于n的方程,解方程求得点F的坐标.

  (1)由抛物线,可知C(0,3).

  n令y=0,则,解得x=-3或x=1,

  n∴A(-3,0),B(1,0).

  n(2)由,可知抛物线对称轴为x=-1.

  n设点M(m,0),则

  n∵P、Q关于直线x=-1对称,

  n∴点,

  n则,MN=(-m-1)×2=-2m-2,

  n∴矩形PMNQ的周长=2(PM+MN)

  n=

  n=

  n=,

  n∴当m=-2时,矩形的周长最大.

  n∵A(-3,0),C(0,3),设直线AC解析式为y=kx+b,

  n解得k=1,b=3,

  n∴直线AC的解析式为y=x+3.

  n当x=-2时,得E(-2,1),

  n∴EM=1,AM=1,

  n∴.

  n(3)如图,

  n∵M点的横坐标为-2,抛物线的对称轴为x=-1,

  n∴N应与原点重合,Q点与C点重合,

  n∴DQ=DC.

  n把x=-1代入,解得y=4,

  n∴D(-1,4),

  n∴.

  n∵,

  n∴FG=4.

  n设,

  n则G(n,n+3).

  n∵点G在点F的上方,

  n∴FG=,

  n解得n=-4或n=1.

  n当n=-4时,,

  n当n=1时,,

  n∴F(-4,-5)或(1,0).

  【点评】此题属于二次函数的综合问题,涉及矩形的性质、一元二次方程的解法、二次函数最值的求法等知识点,综合性较强,难度适中.解此类相关联的几个小题时,要注意前面小题求解的准确性,在解第(2)题时,要充分将抛物线的轴对称的性质与矩形的性质相结合解题;解题过程中要注意数形结合以及方程思想的运用.

2019-06-21 10:26:07

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •