排列组合的题解题方法技巧.
排列组合的题解题方法技巧.
排列组合的题解题方法技巧.
排列组合的题解题方法技巧.
排列组合问题的解题策略
关键词:排列组合,解题策略
一、相临问题——捆绑法
例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?
两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种.
评注:一般地:个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法.
二、不相临问题——选空插入法
例2.7名学生站成一排,甲乙互不相邻有多少不同排法?
甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种.
评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法.
三、复杂问题——总体排除法
在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制.
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.
从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.
四、特殊元素——优先考虑法
对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排.
例4.(1995年上海高考题)1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.
先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.
例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.
由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.
五、多元问题——分类讨论法
对于元素多,选取情况多,可按要求进行分类讨论,最后总计.
例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A)
A.42B.30C.20D.12
增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种.故不同插法的种数为:A62+A22A61=42,故选A.
例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答)
区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有=24种方法,用四种颜色着色有=48种方法,从而共有24+48=72种方法,应填72.
六、混合问题——先选后排法
对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.
例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()
A.种B.种
C.种D.种
本试题属于均分组问题.则12名同学均分成3组共有种方法,分配到三个不同的路口的不同的分配方案共有:种,故选A.
例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()
A.24种B.18种C.12种D.6种
解:先选后排,分步实施.由题意,不同的选法有:C32种,不同的排法有:A31·A22,故不同的种植方法共有A31·C32·A22=12,故应选C.
七.相同元素分配——档板分隔法
例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数.请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?
本题考查组合问题.
先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有种插法,即有15种分法.
总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘.
具体说,解排列组合的应用题,通常有以下途径:
(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素.
(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置.
(3)先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数.
排列组合问题的解题方略
湖北省安陆市第二高级中学张征洪
排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题.同时排列组合问题历来就是一个老大难的问题.因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识.
首先,谈谈排列组合综合问题的一般解题规律:
1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法.
2)排列与组合定义相近,它们的区别在于是否与顺序有关.
3)复杂的排列问题常常通过试验、画“树图”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验.
4)按元素的性