来自刘艺红的问题
直线Ax+By+C=0与圆x^2+y^2=4.交M.N.且C^2=A^2+B^2.求向量OM*向量ON的值.O为原点.
直线Ax+By+C=0与圆x^2+y^2=4.交M.N.且C^2=A^2+B^2.求向量OM*向量ON的值.O为原点.
1回答
2020-10-23 05:39
直线Ax+By+C=0与圆x^2+y^2=4.交M.N.且C^2=A^2+B^2.求向量OM*向量ON的值.O为原点.
直线Ax+By+C=0与圆x^2+y^2=4.交M.N.且C^2=A^2+B^2.求向量OM*向量ON的值.O为原点.
由题意可知原点到直线ax+by+c=0的距离是d=|c|/根号(a^2+b^2),又因为a^2+b^2=c^2,可知d=1.
om=on=2,由此可得出角mon=120度,
所以om*on=2*2*sin120度=2*根号3