来自万坤华的问题
关于Euler函数φ(n)和Smarandache函数S(n)的几个结论证明,1、n>2时,有2|φ(n)2、n≥6时,有φ(n)≥√n3、S(n)定义为可使整除关系n|m!成立的最小正整数m,证明:对于素数p和正整数k,有S(p^k)≤kp.特别地,当k
关于Euler函数φ(n)和Smarandache函数S(n)的几个结论证明,
1、n>2时,有2|φ(n)
2、n≥6时,有φ(n)≥√n
3、S(n)定义为可使整除关系n|m!成立的最小正整数m,证明:
对于素数p和正整数k,有S(p^k)≤kp.特别地,当k
3回答
2020-10-24 20:43