来自陈丽冰的问题
【已知F1、F2为椭圆的焦点,P为椭圆上的任意一点,椭圆的离心率为13.以P为圆心PF2长为半径作圆P,当圆P与x轴相切时,截y轴所得弦长为12559.(1)求圆P方程和椭圆方程;(2)求证:无论点P】
已知F1、F2为椭圆的焦点,P为椭圆上的任意一点,椭圆的离心率为13.以P为圆心PF2长为半径作圆P,当圆P与x轴相切时,截y轴所得弦长为12
559.
(1)求圆P方程和椭圆方程;
(2)求证:无论点P在椭圆上如何运动,一定存在一个定圆与圆P相切,试求出这个定圆方程.
1回答
2020-10-27 04:24