来自甘雨的问题
【直线l与椭圆C:Xˆ2/3+yˆ=1交与A,B两点,原点O到l的距离为√3/2,求三角形AOB面积最大值】
直线l与椭圆C:Xˆ2/3+yˆ=1交与A,B两点,原点O到l的距离为√3/2,求三角形AOB面积最大值
1回答
2020-10-30 13:35
【直线l与椭圆C:Xˆ2/3+yˆ=1交与A,B两点,原点O到l的距离为√3/2,求三角形AOB面积最大值】
直线l与椭圆C:Xˆ2/3+yˆ=1交与A,B两点,原点O到l的距离为√3/2,求三角形AOB面积最大值
若l与x轴垂直,则,l:x=√3/2或-√3/2,代入椭圆方程,可得A、B两点的纵坐标分别为√3/2和-√3/2AB=√3,此时面积为S=1/2*AB*d=1/2*√3*√3/2=3/4***或l不与x轴垂直,可设l:y=kx+b,由(0,0)到l的距离为√3/2可得|b|/...