来自李文铎的问题
高数,数列极限证明题已知:任意ε>0,区间(a+ε,a-ε)外最多只有有限多项Xn.求证:Xn→a(n→∞)
高数,数列极限证明题
已知:任意ε>0,区间(a+ε,a-ε)外最多只有有限多项Xn.求证:Xn→a(n→∞)
1回答
2020-11-01 04:43
高数,数列极限证明题已知:任意ε>0,区间(a+ε,a-ε)外最多只有有限多项Xn.求证:Xn→a(n→∞)
高数,数列极限证明题
已知:任意ε>0,区间(a+ε,a-ε)外最多只有有限多项Xn.求证:Xn→a(n→∞)
任意ε>0,区间(a+ε,a-ε)外最多只有数列Xn的有限多项,设这有限项的最大下标是正整数N,则当n>N时,所有的Xn都在区间(a+ε,a-ε)内,即|Xn-a|<ε,所以Xn→a(n→∞)