来自范秀敏的问题
设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为______.
设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为______.
1回答
2020-11-02 00:59
设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为______.
设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为______.
根据映射的定义可知,f(a)=0或f(a)=1;f(b)=0或f(b)=1;f(c)=0或f(c)=1.
∵f(a)+f(b)=f(c),
∴若f(a)=0,则f(b)=f(c),此时f(b)=f(c)=0或f(b)=f(c)=1,此时对应的映射有2个.
若f(a)=1,则1+f(b)=f(c),此时f(b)=0,f(c)=1,此时对应的映射有1个.
综上:映射f:M→N的个数为3个.
故答案为:3.