师大版小学数学五年级(下册)知识点
一单元:《分数乘法》
分数乘法(一)
知识点:1、理解分数乘整数的意义.分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算.
2、分数乘整数的计算方法.分母不变,分子和整数相乘的积作分子.能约分的要约成最简分数.
3、计算时,可以先约分在计算.
分数乘法(二)
知识点:1、结合具体情境,进一步探索并理解分数乘整数的意义,并能正确进行计算.
2、能够求一个数的几分之几是多少.
3、理解打折的含义.例如:九折,是指现价是原价的十分之九.
分数乘法(三)
知识点:1、分数乘分数的计算方法,并能正确进行计算.
分子相乘做分子,分母相乘做分母,能约分的可以先约分.计算结果要求是最简分数.
2、比较分数相乘的积与每一个乘数的大小.
真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数.
二单元:《长方体(一)》
长方体的认识
知识点:1、认识长方体、正方体,了解各部分的名称.
2、长方体、正方体各自的特点.
顶点面棱
个数个数形状大小关系条数长度关系
86都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形.相对的面是完全一样的长方形.12可以分为三组,相对的棱平行且相等.
86都是正方形.每个面都是正方形.12长度都相等.
3、知道正方体是特殊的长方体.
4、能计算长方体、正方体的棱长总和.
长方体的棱长总和=(长+宽+高)*4或者是长*4+宽*4+高*4
正方体的棱长总和=棱长*12
灵活运用公式,能求出长方体的长、宽、高或是正方体的棱长.
展开与折叠
知识点:1、认识并了解长方体和正方体的平面展开图.
2、了解正方体平面展开图的几种形式,并以此来判断.
长方体的表面积
知识点:1、理解表面积的意义.是指六个面的面积之和.
2、长方体和正方体表面积的计算方法.
3、能结合生活中的实际情况,计算图形的表面积.
露在外面的面
知识点:1、在观察中,通过不同的观察策略进行观察.
如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起.
2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律.
三单元:《分数除法》
倒数
知识点:1、发现倒数的特征并理解倒数的意义.
如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数.倒数是对两个数来说的,并不是孤立存在的.
2、求倒数的方法.
把这个数的分子和分母调换位置.
3、1的倒数仍是1;0没有倒数.
0没有倒数,是因为在分数中,0不能做分母.
分数除法(一)
知识点:1、分数除以整数的意义及计算方法.
分数除以整数,就是求这个数的几分之几是多少.
分数除以整数(0除外)等于乘这个数的倒数.
分数除法(二)
知识点:1、一个数除以分数的意义和基本算理.
一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数.
2、掌握一个数除以分数的计算方法.
除以一个数(0除外)等于乘这个数的倒数.
3、比较商与被除数的大小.
除数小于1,商大于被除数;
除数等于1.商等于被除数;
除数大于1,商小于被除数.
分数除法(三)
知识点:1、列方程“求一个数的几分之几是多少”.
2、利用等式的性质解方程.
3、理解打折的含义.
如:打8折就是指现价是原价的十分之八.
数学与生活
粉刷墙壁
知识点:1、明确我们在粉刷教室墙壁时必须知道的条件.
2、根据实际情况进行计算相应的面积.
折叠:
知识点:1、体会立体图形与展开图形之间的关系,发展空间观念.
2、能正确判断平面展开图所对应的简单立体图形.
四单元:《长方体(二)》
体积与容积
知识点:1、体积与容积的概念.
体积:物体所占空间的大小叫作物体的体积.
容积:容器所能容纳入体的体积叫做物体的容积.
体积单位
知识点:1、认识体积、容积单位.
常用的体积单位有:立方厘米、立方分米、立方米.
2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义.
补充知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位.
长方体的体积
知识点:1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法.
长方体的体积=长*宽*高
正方体的体积=棱长*棱长*棱长
长方体(正方体)的体积=底面积*高
2、能利用长方体(正方体)的体积及其他两个条件求出问题.如:长方体的高=体积/长/宽
补充知识点:长方体的体积=横截面面积*长
体积单位的换算
知识点:1、体积、容积单位之间的进率.
相邻两个体积单位、容积单位之间的进率是1000.
有趣的测量
知识点:1、不规则物体体积的测量方法.
2、不规则物体体积的计算方法.
五单元:《分数混合运算》
分数混合运算(一)
知识点:1、体会分数混合运算的运算顺序和整数是一样的.
分数混合运算(二)
知识点:整数的运算律在分数运算中同样适用.
分数混合运算(三)
知识点:1、利用方程解决