1867年克劳修斯曾表述这样的思想“宇宙的能永远守恒,宇宙的熵永远增大”,“宇宙的熵处于极大,进一步变化的能力就越小,如果最后达到极限状态,那就任何进一步的变化都不会发生了,这个宇宙将进入一个死寂的,永恒的状态”克劳修斯的表述便是“热寂说”的最初由来.
现在的宇宙学和宇宙发展的客观事实都说明了“热寂说”是错误的,这似乎说明热力学第二定律与宇宙学不相容.
热力学与宇宙学相容的关键之一是宇宙在膨胀.
考虑一种简单情况,在一定空间里有两种物质,比如一种是辐射,一种是粒子.(在高一物理教材的绪言中有这样一段话:在宇宙大爆炸的开初,有的只是极高温的热辐射和其中隐现的高能粒子……)如果两类物质的温度不同,即辐射温度Tr≠粒子温度Tm,显然,按照热力学,经过一段时间后将会是Tr=Tm.可是如果上述空间不断膨胀,结论会完全不同.膨胀会使各类物质的温度降低,一般来说,不同物质的温度随着膨胀而降低的速度不一样.辐射温度随膨胀降低得较慢,而粒子则较快.这就是说,随着宇宙的膨胀,原来温度相同的两种物质会变得不同,即Tr>Tm,产生温度差,有人会说这个温度差不能保持,它们将由辐射和粒子之间的碰撞而消失,最后达到热平衡.
热力学与宇宙学相容关键之二是引力理论.
一箱气体,其中包含许多分子,如果气体分子分布不均匀的,按热力学第二定律演化的结果气体分子分布是均匀的,但是同样是这箱气体,如果气体分子之间的引力作用不可忽略,而且起主导作用,结果将完全不同.假定气体分子的分布开始是均匀的,在没有引力时,这是平衡态,而在引力的主导作用的条件下,均匀分布状态并不是稳定的.因为在某个局域内,由于某分子的杂乱无章的运动会使某个局域的密度会变得稍大一点,则这个局域的引力将会变得更强一些,这就会吸收更多的物质,形成更大的密度,这就是破坏不均匀.
在宇宙范围内引力是主导的,所以哪怕是宇宙开始时是均匀的,无结构的,它也会产生出非均匀的有结构的状态.各种尺度的天体,就是依靠这种非均匀化的过程聚集而成的.从早期的均匀宇宙到现在非均匀宇宙就是这样演化的.
为什么宇宙并不象热死预言那样从复杂到简单,而是由简单到复杂?因为有引力.
为什么宇宙并不象热死预言那样从有序到无序,而是从无序(混乱)到有序(有结构)?因为有引力.
为什么宇宙并不象热死预言那样从非热平衡到热平衡,而是热平衡生成非热平衡?也是因为有引力.
由于引力的存在,热寂说已成为历史的一页,为什么引力有“回天之术”,保证着宇宙的进化?因为至今还没有一个完整的引力理论,所有这些问题尚有待解决.
“热寂说”一经提出,即在科学界引起了轩然大波.
1.首先对“热寂说”提出诘难的是麦克斯韦(J.Maxwell).1871年,他在《热理论》一书的末章《热力学第二定律的限制》中,设计了一个假想的存在物——“麦克斯韦妖”.麦克斯韦妖有极高的智能,可以追踪每个分子的行踪,并能辨别出它们各自的速度.这个设计方案如下:“我们知道,在一个温度均匀的充满空气的容器里的分子,其运动速度决不均匀,然而任意选取的任何大量分子的平均速度几乎是完全均匀的.现在让我们假定把这样一个容器分为两部分,A和B,在分界上有一个小孔,在设想一个能见到单个分子的存在物,打开或关闭那个小孔,使得只有快分子从A跑向B,而慢分子从B跑向A.这样,它就在不消耗功的情况下,B的温度提高,A的温度降低,而与热力学第二定律发生了矛盾”.[9]麦克斯韦认为,只有当我们能够处理的只是大块的物体而无法看出或处理借以构成物体分离的分子时,热力学第二定律才是正确的,并由此提出应当对热力学第二定律的应用范围加以限制.
尽管麦克斯韦既没有实现也没有提出任何实际的实验来检验他的假说,但这个“热力学第二定律的破坏者”却困扰了科学界一百多年,成为科学家诘难热力学第二定律并进而反对“热寂说”的著名假想实验.与麦克斯韦佯谬有关的还有后来洛歇密(Loschmid)提出的“可逆佯谬”和赛密罗(E.Zermelo)提出的“再出现佯谬”等都对单向不可逆性和热力学第二定律提出了挑战,实际上也是对“热寂说”提出了挑战.
2.在“热寂说”提出后的数十年中,对其构成最大挑战的科学假说是波尔兹曼(L.Boltzmann)的“涨落说”.波尔兹曼在对气体分子运动的研究中,最先对熵增加进行了统计解释.按照这种解释,热平衡态附近总存在着偶然的“涨落”现象,这种涨落现象并不遵从热力学第二定律.由此,波尔兹曼将气体分子运动论的观点推广到宇宙中,认为整个宇宙可以看成类似在气体状态的分子集团,围绕着整个宇宙的平衡状态则存在着巨大的“涨落”.即使在与整个广延的宇宙相比极其渺小的恒星系和银河系中,在短时期内也存在着这种相对的热平衡附近的“涨落”.按照这种假说,宇宙就必然会由平衡态返回到不平衡态.在这个区域,熵不但没有增加,而且是在减少.因此,宇宙也就不可能产生“热寂”.
波尔兹曼的“涨落说”曾广泛流传,许多人都把它作为反对“热寂说”的新发现.但天文学观测表明,至今没有任何有说服力的证据证明现在的宇宙是处在热平衡态并存在着上下“涨落”.由于缺乏事实依据,“涨落说”并没有真正从科学上解决宇宙“热寂”的问题.而且从逻辑上看,波尔兹曼的“涨落说”实际上是把宇宙“热寂”已经放在他的前提中了.因为他首先承认“涨落”是在平衡态附近发生的.而对于任何“涨落”,不论它有多大,最后必然会消失,重新回到平衡状态.尽管后来一些物理学家,如莱辛巴赫(H.Reihenbach)等发展了玻尔兹曼的思想,把时间增加的方向作为熵增加的方向,并进一步指出了宇宙中存在着熵的涨落现象,但由于同样缺乏观测证据支持而最终放弃.
3.20世纪60年代以来,以普里高津(I.Prigogine)为首的布鲁塞尔学派在研究非平衡态热力学和统计物理学的过程中,找到了开放系统由无序状态转变为有序状态的途径,提出了耗散结构理论.这一理论曾被一些人用来反对“热寂说”.
所谓“耗散结构”是指一种远离平衡态的有序结构.根据热力学第二定律,系统处在热平衡态就是有最大的混乱度,此时熵值达到最高,系统即出现所谓“热寂”.而有序结构的出现即意味着熵的降低,系统便可“起死回生”.这显然与热力学第二定律相悖.如生命的发生和物种的进化等,都是从低级到高级、从无序到有序的变化,是一个熵不断降低的过程.耗散结构理论解决了这个问题.它认为关键在于系统必须是开放的,而且系统内有序结构的产生要靠外界不断供给能量和物质以及负熵流.
耗散结构理论提出不久,一些人即将其推广到整个宇宙,认为宇宙是一个无限发展的开放系统,它远离平衡态.由于它不断吸取负熵流,因而在宇宙的一些区域内,熵不但没有增加反而有减少的趋势.因此宇宙不可能变成完全无序的“热寂”状态.《纽约时报》曾于1980年发表特稿,宣称普里高津的耗散结构理论帮助人类解决了一项科学上最扰人的似是而非的问题.[10]