来自刘东明的问题
直线与平面的夹角公式空间中平面方程为Ax+By+Cz+D=0,法向量n=(A,B,C)直线方程为(x-x0)/m=(y-y0)/n=(z-z0)/p,方向向量s=(m,n,p)平面与直线相交成夹角a.其夹角a的计算公式为sina=|n·s|/(|n|·|s|)
直线与平面的夹角公式
空间中平面方程为Ax+By+Cz+D=0,法向量n=(A,B,C)
直线方程为(x-x0)/m=(y-y0)/n=(z-z0)/p,方向向量s=(m,n,p)
平面与直线相交成夹角a.
其夹角a的计算公式为sina=|n·s|/(|n|·|s|)
还是cosa=|n·s|/(|n|·|s|)?
是如何推导出来的?(请注明详细过程)
另外,直线在平面上的投影方程是什么?
1楼的回答:方向向量的定义有些不同,方向向量=平面内两天相交直线的法向量的向量积,这不能用简单的类比来得出结论。另外,直线在平面上的投影仍是一条直线,需要的是直线的方程,不是一个常数。
非常感谢1楼的回答,为了不致于对其他想了解此问题的人造成困扰,不能将此采纳为最佳答案。
1回答
2020-11-09 14:16