来自孟如的问题
【(2011•青岛一模)已知圆C1:(x+1)2+y2=8,点C2(1,0),点Q在圆C1上运动,QC2的垂直平分线交QC1于点P.(Ⅰ)求动点P的轨迹W的方程;(Ⅱ)设M,N是曲线W上的两个不同点,且点M在第一象】
(2011•青岛一模)已知圆C1:(x+1)2+y2=8,点C2(1,0),点Q在圆C1上运动,QC2的垂直平分线交QC1于点P.
(Ⅰ) 求动点P的轨迹W的方程;
(Ⅱ) 设M,N是曲线W上的两个不同点,且点M在第一象限,点N在第三象限,若
OM+2
ON=2
OC1,O为坐标原点,求直线MN的斜率k;
(Ⅲ)过点S(0,−13)且斜率为k的动直线l交曲线W于A,B两点,在y轴上是否存在定点D,使以AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.
1回答
2020-11-10 06:44