来自布和的问题
若直线ax+by+1=0(a、b>0)过圆x2+y2+8x+2y+1=0的圆心,则1a+4b的最小值为()A.20B.16C.12D.8
若直线ax+by+1=0(a、b>0)过圆x2+y2+8x+2y+1=0的圆心,则1a+4b的最小值为()
A.20
B.16
C.12
D.8
1回答
2020-11-15 21:47
若直线ax+by+1=0(a、b>0)过圆x2+y2+8x+2y+1=0的圆心,则1a+4b的最小值为()A.20B.16C.12D.8
若直线ax+by+1=0(a、b>0)过圆x2+y2+8x+2y+1=0的圆心,则1a+4b的最小值为()
A.20
B.16
C.12
D.8
圆x2+y2+8x+2y+1=0的圆心(-4,-1)在直线ax+by+1=0上,
所以-4a-b+1=0,即1=4a+b代入,
得1a