来自钱学双的问题
均值不等式的疑问x+y+z=pi,求sinx+siny+sinz的最大值这题用和差化积做是(3/2)*根号2,但是如果用均值不等式,sinx+siny+sinz>=3(sinxsinysinz)^(1/3).当x=y=z=pi/3时取等,此时最小值是(3/2)*根号2,这是怎么回事
均值不等式的疑问
x+y+z=pi,求sinx+siny+sinz的最大值
这题用和差化积做是(3/2)*根号2,但是如果用均值不等式,sinx+siny+sinz>=3(sinxsinysinz)^(1/3).当x=y=z=pi/3时取等,此时最小值是(3/2)*根号2,这是怎么回事?
1回答
2020-11-16 10:05