【高二数学--抛物线定义及方程已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根2/2,直线L:y=x-2根2与以圆点为圆心,以椭圆C1的短半轴为半径的圆相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1】
高二数学--抛物线定义及方程
已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根2/2,直线L:y=x-2根2与以圆点为圆心,以椭圆C1的短半轴为半径的圆相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线L1过点F1且垂直于椭圆的长轴1,动直线L2垂直L1于点P,线段PF2的垂直平分线交直线L2于点M,求点M的轨迹C2的方程.
第二问比较棘手啊,