【数学必修3的公式整理好的】-查字典问答网
分类选择

来自顾幸的问题

  【数学必修3的公式整理好的】

  数学必修3的公式整理好的

1回答
2019-08-26 06:04
我要回答
请先登录
黎梨苗

  乘法与因式分解

  a^2-b^2=(a+b)(a-b)

  a^3+b^3=(a+b)(a^2-ab+b^2)

  a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a

  根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理

  判别式

  b^2-4ac=0注:方程有两个相等的实根

  b^2-4ac>0注:方程有两个不等的实根?

  b^2-4ac<0注:方程没有实根,有共轭复数根

  三角函数公式

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA?

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)?

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/[1-(tanA)^2]

  cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

  半角公式

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))?

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B)

  2cosAsinB=sin(A+B)-sin(A-B))

  2cosAcosB=cos(A+B)-sin(A-B)

  -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2

  cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

  1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)5

  1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b^2=a^2+c^2-2accosB注:角B是边a和边c的夹角

  圆的标准方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圆心坐标

  圆的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>0

  抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py

  直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h

  正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'

  圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2

  圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

  弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

  锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h?

  斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

  柱体体积公式V=s*h圆柱体V=pi*r2h

  数列基本公式:

  9、一般数列的通项an与前n项和Sn的关系:an=

  10、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k项)当d≠0时,an是关于n的一次式;当d=0时,an是一个常数.

  11、等差数列的前n项和公式:Sn=Sn=Sn=

  当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式.

  12、等比数列的通项公式:an=a1qn-1an=akqn-k

  (其中a1为首项、ak为已知的第k项,an≠0)

  13、等比数列的前n项和公式:当q=1时,Sn=na1(是关于n的正比例式);

  当q≠1时,Sn=Sn=

  三、有关等差、等比数列的结论

  14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍为等差数列.

  15、等差数列中,若m+n=p+q,则

  16、等比数列中,若m+n=p+q,则

  17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍为等比数列.

  18、两个等差数列与的和差的数列、仍为等差数列.

  19、两个等比数列与的积、商、倒数组成的数列

  、、仍为等比数列

2019-08-26 06:07:36

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •