来自倪浩如的问题
【(2012•道里区二模)如图,在平面直角坐标系内,点O为坐标原点,直线y=12x+3交x轴于点A,交y轴于点B点C(4,O),过点C作AB的垂CD,点D为垂足,直线CD交y轴于点E,(1)求点E的坐标.(2)】
(2012•道里区二模)如图,在平面直角坐标系内,点O为坐标原点,直线y=12x+3交x轴于点A,交y轴于点B点C(4,O),过点C作AB的垂CD,点D为垂足,直线CD交y轴于点E,
(1)求点E的坐标.
(2)连接AE,动点P从点A出发以1个单位/秒的速度沿AC向终点C运动,过点P作PP1∥CE交AE于点P1,设点P(点P不与点A,C重合时)运动的时间为t秒,PP1的长为y,求y与t之间的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,点Q为P1E中点,连接DQ,当t为何值时有PP1DQ=25?并求出此时同时经过P、O、E三点的圆的面积.
1回答
2020-12-04 16:18