来自李雅莉的问题
如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上.求证:BC=AB+DC.
如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上.求证:BC=AB+DC.
1回答
2020-12-05 05:21
如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上.求证:BC=AB+DC.
如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上.求证:BC=AB+DC.
证明:延长BE交CD的延长线于点F,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵AB∥CD,
∴∠F=∠ABE,∠A=∠FDA,
∴∠F=∠CBE,
∴CF=BC,
∵CE平分∠BCD,
∴BE=EF(三线合一)),
在△ABE和△DFE中,
∠F=∠ABEEB=EF∠AEB=∠DEF