来自秦建军的问题
【已知点o是锐角三角形ABC内一点,且OA=OB=OC设角BAC=X度,角BOC=y度,求Y关于x的函数解析式,并指出X的取值范围】
已知点o是锐角三角形ABC内一点,且OA=OB=OC设角BAC=X度,角BOC=y度,求Y关于x的函数解析式,并指出X的取值范围
1回答
2020-12-05 04:26
【已知点o是锐角三角形ABC内一点,且OA=OB=OC设角BAC=X度,角BOC=y度,求Y关于x的函数解析式,并指出X的取值范围】
已知点o是锐角三角形ABC内一点,且OA=OB=OC设角BAC=X度,角BOC=y度,求Y关于x的函数解析式,并指出X的取值范围
因为OA=OB=OC所以∠OAB=∠OBA∠OAC=∠OCA∠OBC=OCB
又因为∠BAC=x°=∠OAB+∠OAC
所以x°=∠OBA+∠OCA所以∠OAB+∠OAC+∠OBA+∠OCA=2x°
则∠OBC+OCB=180°-2x°因为∠BOC=y°=180°-(∠OBC+∠OCB)
所以y°=180°-(180°-2x°)化简得y°=2x°即y=2x(o°