来自李建胜的问题
【已知点A(-1,n)(n>0)和点B(2,3)在抛物线y1=x2+bx+c上,点C(1,0)是x轴上一点,且CA+CB的值最小.(1)求抛物线y1的解析式.(2)左右平移抛物线y1=ax2+bx+c,记平移后点A的对应点为A′】
已知点A(-1,n)(n>0)和点B(2,3)在抛物线y1=x2+bx+c上,点C(1,0)是x轴上一点,且CA+CB的值最小.
(1)求抛物线y1的解析式.
(2)左右平移抛物线y1=ax2+bx+c,记平移后点A的对应点为A′,点B的对应点为B′,点E(-1,0)和点F(-3,0)是x轴上两个定点,问是否存在某个位置,使四边形A′B′EF的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.
(3)平移抛物线y1=ax2+bx+c得到y2=(x-h)2,当2<x≤m时,有y2≤x恒成立,当m取最大值时,求h的值.
1回答
2020-12-09 02:28