人教版五年级下册数学做应用题的方法
人教版五年级下册数学做应用题的方法
人教版五年级下册数学做应用题的方法
人教版五年级下册数学做应用题的方法
一、拆分应用题
学生获取知识遵循从易到难、从简单到复杂的认识归律.如果学生能把较复杂的应用题经过加工,其简单化,那么,题解起来就比较容易了.
拆分应用题就是根据应用题的构成,按题目的叙述顺序,将题目中的已知条件折散,并把和问题横排或纵排在一起,使原来较为复杂的应用题变得直观、简单.但进行排列时,既要尽力做到去粗取精,又要保证能表达每一分句的意思.
例如:“六年级参加数学小组的有36人,语文小组人数是数学小组的3/4,体育小组的人数是语文小组的2/3.体育小组有多少人?”这道题可以拆分为下面的形式:
已知:数36人语是数的3/4体是语的2/3
求:体?
或者拆分为:
已知:数36人
语是数的3/4
体是语的2/3
求:体?
为了使小生能在排列时做得更简洁,可以训练学生在规定的时间内,记下教师所念的应用题.但教师念应用题时,要下意识地将时间缩短,尽量不要让学生能一字不漏地抄下原题,要让学生感到时间紧迫,这样学生才会想出精减的方法,从而将题目简洁地记下来.长此以往,还能提高学生提炼数学语言的能力和水平,加快书写速度,提高学习效率.
二、审题
审题就是对题中的每一个已知条件和问题进行仔细地分析和题解,弄清已知条件和问题所蕴含的运算意义.对于能换说法的条件,审题时还要多多地进行换说法,力求把每一说法的蕴含的运算意义都弄得一清二楚,明明白白,这样不仅能把题目审透彻,而且有利于发展学生思维,为学生打开丰富的解题思路,使学生学会运用不同的方法灵活解题.
例如:“一条裤子的价格是75元,是一件上衣的2/3.一件上衣多少元?”题目中的“是一件上衣的2/3”是一个缺省条件,是题目的突破口,应先补充完整:“(裤子)是一件上衣有2/3”,这样有助于学生容易换成以下说法:
(1)上衣是裤子的3/2;
(2)裤子比上衣等于2比3;
(3)上衣比裤子等于3比2;
(4)上衣比裤子多1/2;
(5)裤子比上衣少1/3;
(6)上衣占3份,裤子占2份,共5份.
对于学生审不清的地方,教师应当作适当的点拨、引导,例如,像“‘甲’比‘乙’多‘几分之几’、少‘几分之几’、增加‘几分之几’、减少‘几分之几’”等的已知条件或问题,学生往往会在后面的“多几分之几、少几分之几、增加几分之几、减少几分之几”上出现理解错误或理解困难,因此,教师务必使学生明白这些关键字词的含意是指“多的部分”、“少的部分”、“增加的部分”、“减少的部分”是“多、少、增加、减少”等字前或“比”字后的量的几分之几.
三、找数量关系
数量关系是指题目中已知条件、未知条件和问题之间,以及它们各自内部之间的相互关系,简单地说,数量关系就是题目中的相等关系.找数量关系就是用“相等”关系来表述题目.
有的题目,数量关系简单,很容易找出;有的题目数量关系复杂,需要对已知条件和问题进行全面仔细的分析研究才能找出.只有找出正确无误的数量关系,才能称得上真正理解了题意,才能正确解题.下面介绍几种找数量关系的方法.
1、顺向思考,抓住相等关系的字眼,根据已知条件和问题蕴含的运算意义,按“多”加少“减”原则,从已知条件和问题上逐一找.
例如:“五年级种树96棵,四年级比五年级的3/4多8棵,三年级是四年级的4/5.三年级种了多少棵?”将本题拆分找数量关系如下:
已知:五96棵
四比五的3/4多8棵
???????
四=五×3/4+8(或:四-五×3/4=8;四-8=五×3/4)
三是四的4/5
?????
三=四×4/5
求:三?
2、对已知条件和问题综合找
有的应用题,单从某个已知条件或问题上并不能找到数量关系,需要将已知条件和问题综合起来才能表达运算意义,才存在数量关系.
例如:“一本书,第一天看了20页,第二天看了35页,还剩65页.这本书有多少页?”找数量关系如下:
已知:第一天20页→(找不出)╲
第二天35页→(找不出)↘
综合得:第一天+第二天+剩下=书的页数
剩65页→(找不出)↗
求:书有?页→(找不出)╱
3、从难句上找
有的应用题中含有“‘甲’比‘乙’多‘几分之几’、少‘几分之几’、增加‘几分之几’、减少‘几分之几’”等类型的语句,学生往往理解不透,而这些地方恰恰正是正确解题的关键所在,因此,只要学生从这些语句上找出数量关系,就能够迎刃而解.
例如:在“桃树比梨树多1/5”这一条件里,按上面的第一种方法,学生往往把数量关系找成“桃=梨+1/5”,这其实是理解不了“桃树比梨树多1/5”这一条件造成的.这里的“多1/5”是指“‘多的部分’是梨的1/5”,由此便可得到“多的部分=梨×1/5”,从而找出正确的数量关系:“桃=梨+梨×1/5”.
4、借助线段图找
有的应用题,利用线段图来找数量关系,很容易找出.利用这种方法的关键是找准单位“1”.对于单位“1”的确定,一般是“谁”的几倍或几分之几,比“谁”,“谁”就为单位“1”.这样确定单位“1”以后,先画单位“1”的量(标量),再画其他的量(比较量).
5、从应用题的类型上去找
有的应用题,从类型上看,数量关系比较稳定.以下谈谈常见的几类应用题的数量关系的找法.
(1)几何应用题
几何应用题指的是有关平面图的周长和面积计算的应用题,以及立体图形表面积和体积计算的应用题.这类应用题的数量关系一般就是相应的公式.因此,可以先让学生写出相关公式,然后标出公式中的已知数量,弄清未知量该怎么求,进而求出答案.
例如:“一个长方形、一个正方形和一个圆的周长相等.已知长方形长10厘米,宽5.7厘米.它们的面积各是多少?”可以让学生先写出各自的周长公式和面积公式,根据周长相等便可以求出各自的面积.
对于几何应用题,教师不仅要教育学生灵活变通地运用公式,而且要教育学生学生要考虑实际,否则,有的应用题,学生做错了都不知道是怎么回事.例如:“一个圆柱形水池,直径是20米,深2米.这个水池占地面积是多少?”对于这种题,如果学生只是死记硬背公式,而不考虑实际,就会把它算成“2个底面积+侧面积”,从而导致了错误.
(2)行程、生产、盈亏、工程应用题
这四类应用题,其数