【(2013•连云港)小明在一次数学兴趣小组活动中,对一个数-查字典问答网
分类选择

来自韩玉琴的问题

  【(2013•连云港)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABC】

  (2013•连云港)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

  问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)

  问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

  实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,

  3≈1.73)

  拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(92,92)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

1回答
2020-12-18 18:08
我要回答
请先登录
戚晓芳

  问题情境:∵AD∥BC,∴∠DAE=∠F,∠D=∠FCE.∵点E为DC边的中点,∴DE=CE.∵在△ADE和△FCE中,∠DAE=∠F∠D=∠FCEDE=CE,∴△ADE≌△FCE(AAS),∴S△ADE=S△FCE,∴S四边形ABCE+S△ADE=S四边形ABCE+S△FCE...

2020-12-18 18:10:49

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •