来自刘明奇的问题
【(2012•威海)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C】
(2012•威海)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为点F,点P在抛物线上,且位于对称轴的右侧,PM⊥x轴,垂足为点M,△PCM为等边三角形.
(1)求该抛物线的表达式;
(2)求点P的坐标;
(3)试判断CE与EF是否相等,并说明理由;
(4)连接PE,在x轴上点M的右侧是否存在一点N,使△CMN与△CPE全等?若存在,试求出点N的坐标;若不存在,请说明理由.
1回答
2020-12-18 21:03