来自彭珍瑞的问题
已知在平面直角坐标系中,点A、B的坐标分别为A(3,0)、B(O,4),点C的坐标为C(-2,O),点P是直线AB上的一动点,直线CP与y轴交于点D.(1)当CP⊥AB时,求OD的长;(2)当点P沿直线AB移
已知在平面直角坐标系中,点A、B的坐标分别为A(3,0)、B(O,4),点C的坐标为C(-2,O),点P是直线AB上的一动点,直线CP与y轴交于点D.
(1)当CP⊥AB时,求OD的长;
(2)当点P沿直线AB移动时,以点P为圆心,以AB为直径作⊙P,过点C作⊙P的两条切线,切点分别为点E、F.
①若⊙P与x轴相切;求CE的长;
②当点P沿直线AB移动时,请探求是否存在四边形CEPF的最小面积S?若存在,请求出S的值;若不存在,请说明理由.
1回答
2020-12-19 06:08