(1)若点E与点D重合,则k=1×2=2;
(2)当k>2时,如图1,点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD为矩形,
∵PF⊥PE,
∴S△FPE=PE•PF=(-1)(k-2)=k2-k+1,
∴四边形PFGE是矩形,
∴S△PFE=S△GEF,
∴S△OEF=S矩形OCGD-S△DOF-S△EGD-S△OCE=•k-(k2-k+1)-k=k2-1
∵S△OEF=2S△PEF,
∴k2-1=2(k2-k+1),
解得k=6或k=2,
∵k=2时,E、F重合,
∴k=6,
∴E点坐标为:(3,2);
(3)存在点E及y轴上的点M,使得△MEF≌△PEF,
①当k<2时,如图2,只可能是△MEF≌△PEF,作FH⊥y轴于H,
∵△FHM∽△MBE,
∴=,
∵FH=1,EM=PE=1-,FM=PF=2-k,
∴=,BM=,
在Rt△MBE中,由勾股定理得,EM2=EB2+MB2,
∴(1-)2=()2+()2,
解得k=,此时E点坐标为(,2),
②当k>2时,如图3,只可能是△MFE≌△PEF,作FQ⊥y轴于Q,△FQM∽△MBE得,=,
∵FQ=1,EM=PF=k-2,FM=PE=-1,
∴=,BM=2,
在Rt△MBE中,由勾股定理得,EM2=EB2+MB2,
∴(k-2)2=()2+22,解得k=或0,但k=0不符合题意,
∴k=.
此时E点坐标为(,2),
∴符合条件的E点坐标为(,2)(,2).