【An=n^2和An=n^3数列的求和通项公式?已知数列通项-查字典问答网
分类选择

来自马凯的问题

  【An=n^2和An=n^3数列的求和通项公式?已知数列通项公式如下:An=n^2Bn=n^3求它们的求和公式S(An)和S(Bn)由于等比数列其实是指数型数列,想看看幂函数型的数列有没有通项求和公式.一些补充:1.各位大】

  An=n^2和An=n^3数列的求和通项公式?

  已知数列通项公式如下:

  An=n^2

  Bn=n^3

  求它们的求和公式S(An)和S(Bn)

  由于等比数列其实是指数型数列,想看看幂函数型的数列有没有通项求和公式.

  一些补充:

  1.各位大大请告诉我你们的推倒灵感和推倒过程

  2.如果是Cn=n^t(t为常数)呢?求S(Cn)

  3.另求Dn=n^n求S(Dn)

  各位大大劳神了,在下先万分谢谢各位大大了@!

1回答
2020-12-19 18:43
我要回答
请先登录
范振地

  求^2就从^3入手,求^3就从^4入手,求^t就从^(t+1)入手

  因为(n+1)^3=n^3+3n^2+3n+1

  所以2^3=1^3+3*1^2+3*1+1

  3^3=2^3+3*2^2+3*2+1

  ……

  (n+1)^3=n^3+3n^2+2n+1

  所以2^3+3^3+……+(n+1)^3=1^3+2^3+……+3*(1^2+2^2+……+^2)+3(1+2+……+n)+(1+1+……+1)

  所以3(1^2+2^2+……+n^2)=n^3+3n^2+2n+1-a-3-[n(n+1)]/2-n

  所以S(An)=1^2+2^2+……+n^2=(n^3+3n^2+3n)/3-n(n+1)/2-n/3=n(n+1)(2n+1)/6

  同理得S(Bn)=[n^2(n+1)^2]/4

2020-12-19 18:44:56

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •