来自陶桂宝的问题
分解因式:a^n-b^n要求写出详细的证明过程.能否用数列的求和知识解决呢?证明:利用等比数列的求和公式得a^(n-1)+ba^(n-2)+b^2a^(n-3)+...+b^(n-1)=[a^(n-1)-b^(n-1)b/a](1-b/a)=[a^n-b^n]/(a-b)所以,a^n-b^n=(a-b)[a^(n
分解因式:a^n-b^n要求写出详细的证明过程.能否用数列的求和知识解决呢?
证明:利用等比数列的求和公式得
a^(n-1)+ba^(n-2)+b^2a^(n-3)+...+b^(n-1)=[a^(n-1)-b^(n-1)b/a](1-b/a)
=[a^n-b^n]/(a-b)
所以,a^n-b^n=(a-b)[a^(n-1)+ba^(n-2)+b^2a^(n-3)+...+b^(n-1)]。
1回答
2020-12-19 17:24