来自陈祝荣的问题
一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ,
一道微分中值定理题目
若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.
这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ,使得F'(ξ)=0,但要证F''(ξ)=0,还应该有一点的一阶导数也等于0呀.怎么个证法?
1回答
2020-12-24 02:13