来自唐柏森的问题
【设函数f(x)在点x=0处二阶可导,且满足limx→0(f(x)x2+1−cos2xx3)=3.求f(0),f′(0)与f″(0).】
设函数f(x)在点x=0处二阶可导,且满足limx→0(f(x)x2+1−
cos2xx3)=3.求f(0),f′(0)与f″(0).
1回答
2020-12-24 04:29
【设函数f(x)在点x=0处二阶可导,且满足limx→0(f(x)x2+1−cos2xx3)=3.求f(0),f′(0)与f″(0).】
设函数f(x)在点x=0处二阶可导,且满足limx→0(f(x)x2+1−
cos2xx3)=3.求f(0),f′(0)与f″(0).
由题设可知limx→0[f(x)+1−cos2xx]=limx→0[f(x)x2+1−cos2xx3]•x2=0limx→0[f(x)x+1−cos2xx2]=limx→0[f(x)x2+1−cos2xx3]•x=0,从而f(0)=limx→0f(x)=limx→0[f(x)+1−cos2xx]−limx→01−cos2xx=0−limx...