来自涂光亚的问题
设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明1.存在$属于(0.1)是f($)=1-$2.存在连个不同的点$,n属于(0.1)使f`(n)f`($)=1
设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明
1.存在$属于(0.1)是f($)=1-$
2.存在连个不同的点$,n属于(0.1)使f`(n)f`($)=1
1回答
2020-12-24 06:48