来自高庆狮的问题
【设f(x)在[0,a]有连续的一阶导数,在(0,a)二阶可导且f″(x)>0(x∈(0,a)),又f(0)=0.证明:∫a0xf(x)dx>2a3∫a0f(x)dx.】
设f(x)在[0,a]有连续的一阶导数,在(0,a)二阶可导且f″(x)>0(x∈(0,a)),又f(0)=0.证明:∫a
xf(x)dx>2a3∫a
f(x)dx.
1回答
2020-12-24 07:23