【设f(x)在x=0的邻域内具有二阶导数,且lim(x趋于0)(1+x+f(x)/x)^(1/x)=e^3(1)求f(0),f'(0)和f''(0)(2)求lim(x趋于0)(1+f(x)/x)^(1/x)】
设f(x)在x=0的邻域内具有二阶导数,且lim(x趋于0)(1+x+f(x)/x)^(1/x)=e^3
(1)求f(0),f'(0)和f''(0)
(2)求lim(x趋于0)(1+f(x)/x)^(1/x)
【设f(x)在x=0的邻域内具有二阶导数,且lim(x趋于0)(1+x+f(x)/x)^(1/x)=e^3(1)求f(0),f'(0)和f''(0)(2)求lim(x趋于0)(1+f(x)/x)^(1/x)】
设f(x)在x=0的邻域内具有二阶导数,且lim(x趋于0)(1+x+f(x)/x)^(1/x)=e^3
(1)求f(0),f'(0)和f''(0)
(2)求lim(x趋于0)(1+f(x)/x)^(1/x)
(1)lim(x->0)(1+x+f(x)/x)^(1/x)=e^3=e^lim(x->0)1/x*ln[(1+x+f(x)/x)]
故有
lim(x->0)ln[(1+x+f(x)/x)]/x=3
分母趋于0,故分子必趋于0,于是有
lim(x->0)[1+x+f(x)/x)]=1
得
lim(x->0)f(x)/x=0
同样道理,分母趋于0,则分子必趋于0,于是有f(0)=0
利用罗比塔法则:
0=lim(x->0)f(x)/x=lim(x->0)f'(x)/1
得f'(0)=0
再利用罗比塔法则:
3=lim(x->0)ln[(1+x+f(x)/x)]/x=lim(x->0)1/[(1+x+f(x)/x)]*{1+[f'(x)*x-f(x)]/x^2}/1=
lim(x->0)1/[(1+0+0)]*{1+[f'(x)*x-f(x)]/x^2}/1
故有
2=lim(x->0)[f'(x)*x-f(x)]/x^2(下面利用罗比塔法则)
=lim(x->0)[f''(x)*x+f'(x)-f'(x)]/(2x)
=lim(x->0)f''(x)*x/(2x)
=lim(x->0)f''(x)/2
故有f''(0)=4
(2)lim(x->0)(1+f(x)/x)^(1/x)=e^lim(x->0)ln[1+f(x)/x]/x(下面利用罗比塔法则)
=e^lim(x->0)1/[1+f(x)/x]*[xf'(x)-f(x)]/x^2(下面利用罗比塔法则)
=e^lim(x->0)1/[1+0]*[f'(x)+xf''(x)-f'(x)]/(2x)(x消掉)
=e^lim(x->0)f''(x)/2
=e^(4/2)
=e^2
不明白请追问.
我还没学洛必达法则